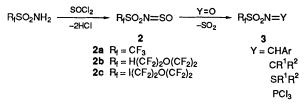
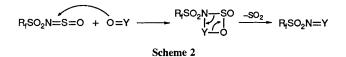
Condensation Reaction of N-Sulphinylperfluoroalkanesulphonamides

Shi-Zheng Zhu* and Qing-Yun Chen


Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai 200032, PR China

N-Sulphinylperfluoroalkanesulphonamides, R_fSO_2NSO , which are prepared by refluxing of perfluoroalkanesulphonamides with thionyl chloride, react easily with aldehydes, ketones, sulphoxides and phosphorus trichloride oxide yielding a series of new compounds $R_fSO_2N=Y$ (Y = CHAr, CR¹R², SR¹R² and PCl₃) with elimination of sulphur dioxide.


Although *N*-sulphinyltrifluoromethanesulphonamide, CF_3 -SO₂NSO, was first prepared twenty years ago,¹ its chemistry has not been thoroughly studied yet. The only report was its reactions with fluorine² and benzenaldehyde.³ In connection with our interest in the chemistry of perfluoroalkanesulphonamides and derivatives, it was found that R_fSO_2NSO 2 are very reactive. The strong electron-withdrawing property of the R_fSO_2N = group^{3,4} makes the sulphinyl sulphur of 2 very electrophilic. By analogy with CF₃SO₂NCO,⁵ 2 would be expected to react with a range of nucleophiles (NuH), such as Table 1

	Entry	2	Y=O	Reaction conditions				
				T/°C	t/h	Product 3	Yield $(\%)^a$	B.p./°C at 1 mmHg
	1	2a	PhCHO	80 ^b	12	3a	58	86–88 ^c
	2	2b	PhCHO	80 ^b	12	3b	62	105–107
	3	2b	CH ₂ [CH ₂] ₄ C=O	100	12	3c	55	92–94
	4	2b	CH ₂ [CH ₂] ₃ S=O		0.5	3d	72	122–124
	5	2b	Cl ₃ P=O	r.t.	8	3e	65	80-83
	6	2c	Me ₂ S=O	r .t. ^b	0.5	3f	78	122
	7	2c	Cl ₃ P=O	r.t.	8	3g	61	85-87

^a Isolated yield. ^b Reaction in CCl₄. ^c M.p. 31–32 °C. r.t. = room temperature.

ROH, RNH₂ and ArOH giving R_fSO_2 NHSONu.⁶ When 2 was treated with other kinds of reagents, *e.g.* ArCHO, cyclohexanone, $R_2S=O$ and $Cl_3P=O$, sulphur dioxide was evolved forming the substituted imines $R_fSO_2N=Y$ (Y = CHAr, CR¹R², SR¹R² and PCl₃), see Scheme 1.^{7†}

It is possible that a four-membered ring intermediate may be involved in the reaction (Scheme 2).

The reactions of 2 with aldehydes and ketones occurred at 80-100 °C, whereas SO₂ was evolved immediately when the more polar sulphoxides and phosphine oxide were mixed with 2 at room temperature.

All the products **3** were moisture-sensitive, *e.g.* $R_fSO_2N=CHPh$ **3b** decomposed to $R_fSO_2NH_2$ and PhCHO during purification using column chromatography. The pure

products were obtained only by several vacuum distillations. This contrasts with the behaviour of the camphor derivative 4, containing a non-fluoro substituent, which required refluxing in HCl solution⁷ for hydrolysis to the sulphonamide. The large difference could be ascribed to the greater electronegativity of the R_fSO_2 group.

All new compounds give satisfactory elemental analyses and the IR, ¹H NMR, ¹⁹F NMR and mass spectra are consistent with the shown structures.‡

Received, 23rd January 1991; Com. 1/00334H

References

- 1 H. W. Roesky, G. Holtschneider and H. H. Giere, Z. Naturforsch. Teil B, 1970, 25, 252.
- 2 H. W. Roesky and G. Holtschneider, Z. Anorg. Allg. Chem., 1970, 168.
- 3 L. M. Yagupolskiil, V. N. Popov, N. Y. Pavlenko, I. I. Maletina, A. A. Mironova, R. Yu. Gavrilova and V. V. Orda, *Zh. Org. Khim.*, 1986, **22**, 1947.
- L. M. Yagupoliskiil, J. Fluorine Chem., 1987, 36, 1.
- 5 E. Bebrend and A. Hass, J. Fluorine Chem., 1974, 4, 83.
- 6 S. Z. Zhu, to be published.
- 7 F. A. Davis, Ping Zhou and G. S. Lae, *Tetrahedron Lett.*, 1990, **31**, 1653.

‡ Spectral data for: **2b**, HCF₂CF₂OCF₂CF₂SO₂NSO, b.p. 56–58 °C at 1 mmHg; ¹H NMR (SiMe₄), δ 6.05 (t, 1H, ²J_{HF} 55 Hz). ¹⁹F NMR (CF₃CO₂H) δ 62.1 d, ²J_{HF} 55 Hz, HCF₂), 5.1 (m, CF₂O) 12.5 (m, OCF₂), 40.7 (s, CF₂SO₂). IR v/cm⁻¹ (KCl), 2923w, 1423w, 1390s, 1287s, 1202vs, 1125s, 1100s, 980s, 928m, 612m, 550m. Mass spectrometry (*m*/z): 344 (M⁺ + 1, 4.84), 343 (M⁺, 28.87), 278 (M⁺ - H-SO₂, 16.68), 226 (M⁺ - H(CF₂)₂O, 3.48), 180 (+OCF₂CF₂SO₂, 25.34), 162 (+CF₂CF₂SON, 11.92), 101 [H(CF₂)₂+, 12.38], 110 (SO₂NS⁺, 36.44), 100 (+CF₂CF₂, 22.91), 80 (SOS⁺, 14.71), 65 (+SO₂H or HCF₂N⁺, 100). **3b**, HCF₂CF₂OCF₂CF₂SO₂N=CHPh, ¹H NMR, δ 8.50 (s, =CH), 7.30 (m, 2H), 6.97 (m, 3H), 5.35 (t, 1H, ³J_{HF} 55 Hz). ¹⁹F NMR, δ 62.1 (d, HCF₂), 5.0 (t, CF₂O), 12.6 (m, OCF₂), 41.0 (s, CF₂SO₂). IR v/cm⁻¹, 3030m, 1624m, 1590m, 1380vs, 1328s, 1290s, 1200vs, 1128s, 982s, 930m, 855m, 610m. Mass spectrometry (*m*/z): 386 (M⁺ + H (4.60), 366 (M⁺ - F, 1.46), 302 (M⁺ - F-SO₂, 2.49), 168 [M⁺ - H(CF₂)₂O(CF₂)₂, 7.64], 154 (PhCH=SO₂+, 12.64), 152 (PhCH=NSO⁺, 17.8), 104 (PhCH=N⁺, 75.19), 101 (HCF₂CF₂⁺, 25.39), 77 (Ph⁺, 100), 64 (SO₂⁺, 4.77), 51 (HCF₂⁺, 34.70).

[†] Compounds 2 were prepared by literature methods.¹ Equimolar quantities of 2 and Y=O were stirred under reflux until the evolution of SO₂ stopped; the mixture was then distilled *in vacuo*. After several distillations, pure products 3 were obtained.